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Abstract 

It is shown that an adaptive  system whose regressor is formed by tap delay-line (TDL) 

filtering of a multitone sinusoidal signal is representable as a parallel connection of a linear 

time-invariant (LTI) block and a linear time-varying (LTV) block. A norm-bound  (induced 

2-norm) is computed explicitly on the LTV block and is shown to decrease as N” where N 

is the  number of taps. Hence, the  adaptive system becomes LTI in  the limit as the  number 

of taps goes to infinity. In the more  realistic case where the number of taps N is finite, the 

new “LTI plus  norm-bounded  perturbation”  representation  renders, for the first  time, the 

adaptive  system  analyzable by standard  robust control methods. 
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1 INTRODUCTION 

A fundamental  problem  in  adaptive noise cancellation is that of cancelling a sinusoidal 

disturbance having unknown frequency content.  It is  known that  the adaptive LMS (least- 

mean-square) noise cancellation algorithm  can  be  applied to this  problem when its regressor 

is constructed by a tap delay-line (TDL) driven by a measured  multitone  sinusoidal  signal 

containing the  same  harmonic content as the signal to  be cancelled [l]. An important 

analysis by Glover  [2]  showed that in  the limit as the  number of taps goes to infinity, the 

resulting adaptive controller can be approximated as a linear  time-invariant (LTI) controller 

having large  gains at  the  disturbance frequencies. Glover’s  LTI analysis helps to explain the 

noise rejection properties of adaptive LMS filters, and provides estimates of their  transients, 

the  depth of their frequency notches,  their closed-loop pole locations,  etc. [2]. 

Rigorously speaking, Glover’s  LTI analysis is only applicable  in the limiting case of an 

infinite  number of taps N = 00. Realistically, this represents an idealization which is never 

satisfied in  practice. To help fill in  the  gap,  the present  paper provides a precise “LTI 

plus norm-bounded  perturbation” characterization of the  adaptive system  in the case of a 

finite number of taps.  This representation clearly demonstrates  the  nature of convergence 

to  an LTI system  as the  number of taps is increased. hrthermore,  the  adaptive system 

becomes analyzable by standard  robust control methods  in the more  realistic and  practical 

case where the number of taps N is finite. 

Background is  given in Section 2  summarizing recent results for adaptive feedforward 

systems  with sinusoidal regressors. In Section 3, these  results are specialized to adaptive 

systems whose regressors are formed by TDL filtering. This leads directly to a representa- 

tion as a parallel connection of a linear  time-invariant  (LTI) block and a linear time-varying 

(LTV) block. A key result of the  paper is an explicit norm-bound  (induced  2-norm)  on the 

LTV block  (cf., Theorem 3.1). Glover’s asymptotic  result [2]  is recovered by noting that 

this  norm  bound decreases as N-l  where N is the number of taps. For N finite, the  norm 

bound is expressed as a function of the  number of taps,  the  adaptation gain, the number of 
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tones, and  the  tone spacing.  Implications of this norm  bound are discussed  for  analyzing 

adaptive  systems  in  the  light of modern  robust  control  theory. 

All results  in  this  paper  are  taken  from a recent JPL internal  document [3], and have 

appeared  in  abridged  form as a conference paper [4]. 

2 BACKGROUND 

2.1 Adaptive  Systems  with Harmonic Regressors 

The configuration to  be  studied is shown in  Figure 2.1. An estimate Q of some  signal y is 

to  be  constructed as a linear  combination of the elements of a regressor  vector z ( t )  E RN,  

Le., 

Estimated Signal 

where w(t)  E RN is a parameter  vector which  is tuned in real-time  using the  adaptation 

algorithm, 

Adaptation  Algorithm 

20 = CLW[F(t)e(t)l (2.2) 

Here, the  notation r(p)[.] is used to denote the multivariable  transfer  function I'(s).I where 

r(s) is any scalar LTI transfer  function  in the Laplace s operator  (the differential  operator 

p will replace the Laplace  operator s in  all  time-domain  filtering  expressions); the  term 

e ( t )  E RP is an  error signal; p > 0 is an adaptation  gain;  and  the signal 5 is  obtained by 

filtering the regressor z through any stable filter F(p) ,  i.e., 

Regressor Filtering 

5 = F(P)[XI (2.3) 

The  notation F(p) [ . ]  denotes the multivariable  transfer  function F ( s )  - I with  stable scalar 

filter F(s) .  
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For the purposes of this  paper,  it will be assumed that  the regressor x can  be  written as 

a linear  combination of m distinct sinusoidal components { w i } g l ,  0 < w1 < w2 < ... < w,. 

Equivalently, it is assumed that  there exists a matrix X E RNxam such that, 

Harmonic Regressor 

x = Xc(t) (2.4) 

c(t) = [sin(wlt),  cos(wlt), ..., sin(w,t), ~ o s ( w ~ t ) ] ~  E R2“ (2.5) 

The following definition will be useful. 

DEFINITION 2.1 The matrix X T X  is  defined as the confluence matrix associated 

with the harmonic regressor x in (2.4). H 

The  name “confluence matrix”  has been chosen to reflect the fact that for overparametrized 

regressors x E RN, N > 2m, the N signal channels of the regressor are effectively combined 

into a smaller  number of 2m channels by properties of this  matrix. The confluence matrix 

should  not be confused with the  autocorrelation  matrix which  is instead  related to  the 

“outer product’’ X X T .  

Equations (2.1)-(2.5) taken  together will be referred to as a  harmonic adaptive system. 

Collectively, these  equations define an  important open-loop  mapping  from the  error signal 

e to  the  estimated  output 6. Because of its  importance,  this  mapping will be denoted by 

the special character ‘H, Le., 

6 = ‘H[e] 

The special structure of ‘H is depicted in Figure 2.1. 

REMARK 2.1 The definition of r(s) is left intentionally general to include  analysis of the 

gradient  algorithm (;.e., with the choice r(s) = l/s), the  gradient  algorithm with leakage 

(;.e., r(s) = l/(s+a); a 2 0)’ proportional-plus-integral adaptation (i.e., r(s) = Ic,+k;/s), 

or arbitrary linear adaptation algorithms of the designer’s choosing. Adaptation laws which 

are nonlinear or normalized (e.g., divided by the norm of the regressor), are  not considered 

here since they  do  not  have  an equivalent LTI representation l?(p). 
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Figure 2.1: LTV operator 3 = R [ e ]  for adaptive  system  with  harmonic regressor z, adap- 
tation law l?(s), and regressor filter F ( s )  

REMARK 2.2 The use of the regressor filter F ( s )  is (2.3) allows the unified treatment 

of many important  adaptation algorithms  including the well-known Filtered-X  algorithm 

from the signal processing literature [5][6] [7][8], and  the Augmented Error  algorithm of 

Monopoli [9]. Since z is comprised purely of sinusoidal components and F in (2.3) is 

stable, all subsequent  analysis will assume that  the filter output k has reached a steady- 

state condition. w 

The following result  taken  from [3][10] will be needed which  gives necessary and sufficient 

conditions for the operator 7-t to  be LTI. 

THEOREM 2.1 (LTI Representation  Theorem) Let  the  regressor z ( t )  in the adap- 

t ive  system (2.1)-(2.3) be given b y  the  general  multitone  harmonic  expression (2.4)(2.5) 

where  the  frequencies {ui}zl are  distinct,  nonzero,  and IF(ju;)l > 0 for   al l  i. 

Then ,  

(i) The  mapping R f r o m  e to  3 is  exactly  representable  as  the  linear  time-invariant 

operator, 

R :  6 = R ( p ) e  

if and  only if the   matr ix  X in (2.4) satisfies the following  X-Orthogonality ( X O )  condition, 
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X-Orthogonal i ty   (XO)  Condi t ion:  

X T X  = D2 
dl2 * 1 2 x 2  0 . . . 0 

0 D2 4 E ~ 2 m x 2 m  

0 
0 . . .  0 dk. I 2 x 2  

where, d i 2  2 0, i = 1, ..., m are  scalars  and IZx2 E R2x2 is the   matrix   ident i ty .  

(ii) H ( s )  in (2.7) is  given in closed-form  as, 
- 

(2.10) 

In words, Theorem 2.1 says that a harmonic  adaptive  system is LTI if and only if its 

confluence matrix is of the pairwise diagonal form (2.9). 

EXAMPLE 2.1 (Filtered-X  Algorithm  with  Leakage) Assume that  the  adaptive system 

with  harmonic regressor (2.1)-(2.5) is  specified as the Filtered-X  algorithm [l] with an 

added leakage term (cf., Ioannou and Kokotovic [ll]), 

w = -ow + pEe (2.13) 

j;: = F(p)s  (2.14) 

for some regressor filter F(s ) ,  and some value of the leakage parameter CY 2 0. 

Then, if the X 0  condition of Theorem 2.1 is satisfied, the LTI expression (2.10) for 

can be calculated by using the choice r(s) = & in Theorem 2.1, to give, 

(2.15) 
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Expression (2.15) allows the Filtered-X  algorithm to  be analyzed in a variety of adaptive 

applications using standard LTI methods (e.g., Bode plots, Nyquist analysis,  root locus, 

etc.) [3]. 

REMARK 2.3 In the special case of X = I one  has a paired  “sin/cos” regressor 3 = c(t)  

which has been  studied by many researchers. Specifically,  Glover [2] gave a rigorous proof 

of its LTI properties for F ( s )  = l,I’(s) = l/s, Q = 0 (in  discrete-time), which was later 

extended by Morgan and Sanford [12] to include F ( s )  # 1, and recently by Collins [13] to 

include  a general adaptation law r(s). Analysis from a control perspective  can be found 

in Sievers and von Flotow [14], Morgan [6], Collins [13], Spanos and  Rahman [15], Bodson, 

Sacks and Khosla [16], and Messner and Bodson [17]. Presently the discrete-time version 

of this sin/cos  result  can be found  in the book by Widrow and  Stearns (cf., [l], page 318). 

Unfortunately, the special case X = I is restrictive  in the sense that  it requires that 

the  disturbance frequencies are known  beforehand.  In contrast, Theorem 2.1 ensures that 

expression (2.15) is  valid  for any X such that  the X 0  condition holds X T X  = D 2 .  For 

example, the X 0  condition holds for adaptive  systems  with infinitely long tap-delay  line 

regressors, (this is equivalent to Glover’s original result [2]). A key advantage of X 0  

condition is that  it allows treatment of tap-delay lines (in particular),  and other types 

of regressor constructions which are applicable to adaptive noise cancellkrr c d  tr.ir4nu.n 

disturbance frequencies. m 

The following result  taken  from [3][18] shows that in the general case where t t x  SO con- 

dition is not satisfied, the  mapping ‘H can always be decomposed into a parallel  connection 

of an LTI subsystem and  an LTV perturbation. 

THEOREM 2.2 (LTI/LTV Decomposition) Consider  the  adaptive  system (2.1)-(2.3) 

with harmonic  regressor (2.4)(2.5). Then ,  

(i) In general  the  mapping ‘H f r o m  e t o  6 can be expressed  as  the  parallel  connection of a n  

7 



LTI block g ( s ) ,  and   an  LTV perturbation block 6 ,  

where, 

m 

(2.16) 

(2.17) 

(2.18) 

F A  blockdiag(3; )  E R2mx2m (2.20) 

(2.21) 

and  where H;(s)  is  as  defined in (2.11) of Theorem 2.1, and D2 is   chosen  (non-uniquely) 

as any   matr ix  of the 2 x 2 block-diagonal f o r m  (2.9). 

(ii) If the  adaptation  law r(s) is   stable  with  infinity  norm Ill?(s)lloo, then   the   ga in  of the 

LTV perturbation  can be bounded f r o m  above  as, 

where 1 1  . [ I 2 ;  denotes  the  induced  &-norm of the  indicated  operator. 

3 TAP  DELAY-LINE  (TDL)  BASIS 

3.1 Single  Tone  Case 

In 1977, Glover  [2] made  the interesting and  important discovery that  an LTI adaptive 

system arises if its regressor x is constructed by filtering a sinusoid through a very long tap 

delay line (TDL). Glover's result  can  be  understood  in  the  present  context by showing that 
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such a regressor satisfies the X 0  condition of Theorem 2.1. Specifically, let the regressor 

z ( t )  = [zl(t), ..., Z N ( t ) l T  E RN be defined by filtering a single frequency w1 > 0, 

through a TDL  with N taps  and  tap delay T ,  i.e., 

where the  term e-('-l)PT in  the differential operator p represents a delay of (k' - l)T time 

units. If ~ ( t )  is written  in  the form x = X c ( t ) ,  then  it can be shown (Le., set i = 1 and 

m = 1 in Theorem A.l  of Appendix A), that  the confluence matrix is given  by, 

where, 

A1 = [ :i: i:z ] ; = [ - cos(N - 1)wlT sin(N - 1)wlT 
sin(N - 1)wlT cos(N - 1 ) q T  
A sin N u  

&(Y)  = - 
sin u 

The first term of (3.3) (a pairwise diagonal matrix), increases as N ,  while the second term 

remains  bounded. Normalizing the  adaptation gain to p = p / N  for some p > 0 (to prevent 

unbounded feedforward gain),  the confluence matrix becomes pairwise diagonal  in the limit 

as N "+ 00, i.e., 

Hence, the X 0  condition is satisfied, and according to Theorem 2.1 the system admits  an 

exact LTI representation given by, 
- 

3~ : 6 = L 1 2  - H l ( p ) e  
2 

where Hl(s) is  given by (2.11)(2.12), and where as = asl +as2. Glover's original  result [2] is 

recovered by specializing (3.8) to F(s )  = 1 (no regressor filter)  and  the  gradient  algorithm 

q S )  = I / ~ .  
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REMARK 3.1 The result of Elliott [20] on synchronous  sampling can also be  understood 

in the context of the X 0  condition. Specifically, if the  disturbance frequency 01 is known 

beforehand, the choices of T and  N.can be synchronized in  the sense that NwlT = k.lr for 

any choice of k such that 0 < k < N. This  ensures that, 

sin NwlT 
sin w1 T &v(wT) = = o  

Using (3.9) in (3.3) shows that, 

(3.10) 

Hence, the X 0  condition is satisfied, and according to Theorem 2.1 the system admits  an 

exact LTI representation  with only a finite  number of taps. w 

3.2 Multi-Tone Case 

Rigorously speaking, Glover’s  LTI analysis of TDL regressors is only applicable  in the 

limiting case when N = 00, i.e., it ignores the  contribution of the LTV subsystem for finite 

N .  A more complete  solution  can be found by putting Glover’s results  into a modern 

robust  control  setting. This will be done  in the present section by applying the LTI/LTV 

decomposition of Theorem 2.2 to  the  TDL regressor case. First, a definition will be useful. 

Simply stated, a  Bounded Tone Set is a set of frequencies {u;}zl which are bounded 

away from 0, T/T and each other.  The definition is not very restrictive since any  signal 
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comprised of a finite  number of distinct  sinusoids lies in a Bounded  Tone  Set when T is 

chosen sufficiently small (;.e., to ensure Nyquist sampling of its highest  component). The 

minimum spacing parameter will play a central  role  in  subsequent  discussion. 

The  main result of the  paper follows [3][4]. 

THEOREM 3.1 (Tap Delay-Line Basis) Consider  the  adaptive  system (2.1)-(2.3) with 

harmonic  regressor (2.4)(2.5), and  input/output  mapping X in (2.6). Let  the  components 

of the  regressor x = [ X I ,  ,,., XNIT E RN be defined b y  filtering  a  signal ( ( t )  E R1 through  a 

tap  delay  line  with N taps  and  tap  delay T ,  i.e., 

where  the  measured  signal ( is  given b y  the  following  sum of rn sinusoids, 

(3.13) 

and  frequencies {w;}gl lie in a  bounded  tone  set a(m, T,g) .  

Then ,  

(i) T h e  regressor x ( t )  can be wri t ten in harmonic   form (2.4)(2.5) where  the  matrix 

X E RNx2m satisfies, 

X ~ X = D ~ + A  (3.14) 

O 1  

and the matrix  perturbation A = X T X  - D2 is  norm-bounded  as, A 

(3.15) 

(3.16) 

(ii) (LTI/LTV  Decomposi t ion)  
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The  mapping 7-i f r o m  $ t o  e  can be uniquely  decomposed  into  the  parallel  connection of 

a n   L T I  block; z(s), and  an  LTV perturbation block d, 

where, 

(3.18) 

6 [ e ]  A p ~ ( t ) ~ A I ' ( p >  [Fc(t)e] (3.19) 

where  the  perturbation  matrix A is  defined in (3.14) w i th   norm bound (3.16), and Hi(s) is 

given  by (2.11) of Theorem 2.1. 

Furthermore, if the  adaptation  law r(s) is  stable  with  infinity  norm I I I ' ( s ) l l m ,  then   the  

gain of the   LTV  perturbat ion  can be bounded  as, 

where 1 1  * I12i indicates  the  induced  &-norm. 

(iii) (Normalized  Adaptation  Gain) 

(3.20) 

By normalizing  the  adaptive  gain  to p = FIN, the  operators in (3.18)(3.19) of (ii) 
become, 

and  the  upper  bound  on  the  gain of the   LTV  per turbat ion  in (3.20) becomes, 

(3.21) 

(3.22) 

(3.23) 

where I I I ' ( s ) l l m  is  assumed  to  exist. 

(iv) (Asymptotic  Properties) 
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If the  adaptation  law r(s) is stable  (with  bounded infinity n o r m  /lr’(s)l/m), and  the 

adaptation  gain  is  normalized  as 1.1 = j i /N f o r  j i  > 0 constant,   then as N + 00 the 

mapping X becomes LTI with  asymptotic  transfer  function, 

(3.24) 

PROOF: 

Proof of (i): From  Theorem A. l  the confluence matrix is  given  by X T X  = M where M 
is  given by (A.45)-(A.48). Hence, A = M - D2 E R2mx2m has  the  symmetric block 2-by-2 

structure (A.70) used in  Lemma A.5. Applying the  result (A.71) of Lemma A.5 gives, 

(3.25) 

(3.26) 

where use has been made of property P.5 of Lemma A.4 in  equation (3.25). 

Proof of (ii): Results follow  by applying the LTI/LTV Decomposition of Theorem 2.2 

noting  from (3.15) that in  the present case d i2  = :cy:. 

Proof of (iii): Simply substitute p = p / N  into  the LTI and LTV blocks, where p > 0 is 

a constant. 

Proof of (iv): It is seen that  the normalized LTI transfer  function z(s) in (3.21) remains 

unaffected as N increases while the normalized LTV perturbation  in (3.22)  goes to zero 

as N increases. Hence, as N + co the  mapping ?i becomes LTI with  asymptotic  transfer 

function given in (3.24), as desired. 

For convenience, the  results of Theorem 3.1 are summarized  in  Figure 3.1.  Specifically, 

Figure 3.1 Part a. shows the  harmonic  adaptive system  with TDL basis and normalized 

adaptation gain p = p / N ;  Part b. shows the equivalent decomposition into an LTI block 

and a norm  bounded LTV perturbation block. Note that  the time-varying perturbation 

block  goes to zero asymptotically as N becomes large. 
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LTI Block %) 
- m  

+ kxa’Hi(s) 
e 2 i=l - ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

W) 
A 
N 
- 

F(s) 

c(t)  t 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

L N  Block 
l i ~ l L ~ ~ ~ ( ~ h l l ~ ( ~ ) l l ~ m ~ i l ~ ( W i ) l )  pm2n 

Figure 3.1: LTI/LTV decomposition of ‘FI for harmonic  adaptive  system  with TDL basis 
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REMARK 3.2 The asymptotic  result (iv) of Theorem 3.1 follows essentially from the 

special form of the confluence matrix X T X  in (3.14) which arises in the  TDL case. Specifi- 

cally, in  relation (3.14), the  matrix D2 given by (3.15) (and hence the associated LTI block) 

grows  linearly with  the  number of taps N ,  while the  perturbation  matrix A (and hence the 

associated LTV block) remains bounded as N increases. 

Hence, when the LTI and LTV paths are normalized by 1/N through choice of adap- 

tation gain p = j i /N  (as shown in  Figure 3.1) and  the limit is taken as N becomes large, 

the LTI part remains  constant while the  norm  bound on the LTV part decreases as 1/N. 

This  indicates that  the LTV part can be  made  arbitrarily  small by choosing N sufficiently 

large, while the LTI part remains unaffected. 

REMARK 3.3 Interestingly, the bound  on the LTV perturbation d in (3.23) depends 

on the boundedness of the tone-set  through the minimum spacing parameter g > 0 defined 

in Definition 3.1. Specifically, a smaller g requires a larger N to justify the  asymptotic 

approximation to  the  same degree. It is worth  noting that these  analytical  results  are 

consistent  with the  heuristic discussions of tone spacing found Glover's original paper [2] 

(cf., Section IV, pp. 488). Also interesting is the  appearance of m2 in  the  numerator of 

the  norm  bound (3.23) which indicates that if the  number of tones m in  the regressor is 

increased,  one  must  increase N as the square of rn to justify the  asymptotic  approximation 

to  the  same degree. 

EXAMPLE 3.1 (Filtered-X  Algorithm  with  Leakage) Assume that  the adaptive sys- 

tem  in  Theorem 3.1 is  specified as the Filtered-X  algorithm  with an  added leakage term 

(2.13)(2.14). Let the regressor z be defined as in  Theorem 3.1 by filtering the sinusoidal 

signal [ ( t )  in (3.13) through a tap delay line  with N taps  and  tap delay T ,  and where the 

frequencies {w;}g1 in [ ( t )  lie in a bounded tone set S2(rn, T ,  E ) .  Then using a normalized 

adaptive  gain p = j i / N ,  the LTI expression (3.21) for x can be calculated as, 

(3.27) 
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The  norm  bound (3.23) on the LTV perturbation is computed as, 

(3.28) 

R E M A R K  3.4 It is emphasized that using the LTI transfer  function (3.27) and  the  norm 

bounded perturbation (3.28), the Filtered-X  algorithm  with a finite-length TDL regressor 

can be analyzed  in adaptive applications using a variety of standard modern  robust  control 

methods (e.g., small  gain  theorem,  p-Synthesis,  etc.). This includes the  important  practical 

m e  where the  plant P ( s )  blocking the cancellation path is not completely known, i.e., the 

regressor filter is  chosen as F ( s )  = P(s )  where P(s )  = $(s)(l+ AM) and AM is a specified 

multiplicative  uncertainty (for example). rn 

R E M A R K  3.5 The  bound (3.28) on the LTV perturbation is finite only if Q # 0. 

Accordingly, “leakage” is required in  the  adaptive law to ensure  its  asymptotic convergence 

to  an LTI system as the number of taps is increased. Interestingly, the need for leakage in 

this  context  has  not been previously considered by  Glover and  others. rn 

4 CONCLUSIONS 

A 1977 result due to Glover indicates that  an  adaptive system  with a sinusoidal tap-delay- 

line regressor becomes LTI in  the limit as the number of taps is increased to infinity. 

This  result  forms  the basis for understanding  and designing many  present-day  adaptive 

algorithms which are  able  to cancel sinusoidal disturbances of unknown frequency [l]. 

Unfortunately, Glover’s result is rigorously only true  in  the limit as the  number of taps 

is increased to infinity. The present  paper (cf., Theorem 3.1) extends  these  earlier  results by 

putting  the problem into a modern  robust  control  setting. Specifically, the  adaptive system 

is shown to  be a parallel connection of LTI and LTV blocks. Since one is mainly  interested 

in the LTI properties,  the LTV part is treated as a perturbation.  The  main  result of this 

paper  computes an explicit norm-bound (3.23) on the LTV perturbation.  The  norm-bound 

16 



is seen to  be  proportional to rn2/(Ng) which clearly indicates its size as a function of the 

number of taps N ,  the minimum  tone spacing parameter E,  and  the  number of tones m. 

The  norm  bound goes to zero asymptotically as N goes to infinity thus recovering Glover's 

result. However, in  the more general case where N is finite, the availability of this norm- 

bound  opens up new opportunities for analyzing adaptive  systems using modern  robust 

control methods,  applicable to LTI systems subject to norm-bounded  perturbations. 
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A APPENDIX: Properties of TDL  Regressors 

The  purpose of Appendix A is to provide the detailed structure of the confluence matrix 

X*X for a tap delay-line basis (;.e., in  Theorem A.l), and  additional  supporting  results 

which are needed to prove Theorem 3.1. 

The following definitions will be used throughout 

r 1 1 
Appendix A: 

1 sin(N - 1)wiT J 

sj = cos((N - l ) ( W i  - U j ) T / 2 )  A 

s ; ~  = sin((N - l ) (wi  - w j ) T / 2 )  A 

cij = COS((N - I)(wi + ~ j ) T / 2 )  A 

s;j = sin((N - l ) (w i  + w j ) T / 2 )  A 
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(A.lO) 

LEMMA A . l  Let BN(u)  be defined by (A.10).  Then,  on the interval 0 5 u 5 7r, the 

following  inequality holds, 

where, 
A ~ ( u )  = min(u, 7r - u )  (A.12) 

PROOF: A sinusoid sinu can be bounded below on the interval 0 5 u 5 7r by  piecewise 

linear segments as follows, 

1 I sin V I  2 - min(2u, 2(7r - u)) ;  for 0 5 u 5 7r (A.13) 
7r 

Hence, 

(A.14) 

LEMMA A.2 Let B N ( v )  be defined by (A.10).  Then for frequencies { w i } g l  in  a bounded 

tone set f l (m,T,g) ,  the following  inequalities hold, 

(A.15) 
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Proof of (A.15): 
m m 

(A.20) 

Here, the first  inequality in (A.20) follows  by (A.11) of Lemma A.l ;  the second equality 

follows  by definition of r in (A.12); and  the  last inequality follows  by properties of the 

bounded tone  set n(m, T ,  y )  in (3.11). 

Proof of (A.16): 

(A.21) 

< 7r 7r - - - (A .23) - min(2y, 27r - (7r - 2 4 )  2~ 

Here, equation (A.21) follows  by (A.11);  (A.22) follows  by the definition of r ( - )  in (A.12) 

and  the fact that  the function a,(-) is even; and (A.23) follows from (A.18). 

Proof of (A.17): 

(A.24) 
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Here, equation (A.24) follows  by (A.11);  (A.25) follows  by the definition of T ( . )  in (A.12) 

and the fact that  the function BN(-) is even; and (A.26) follows from (A.19). W 

LEMMA A.3 Let Ci,S; be as defined in (A.1). Then the  following identities hold, 

Proof of (A.27): 

(A.27) 

(A.28) 

(A.29) 

(A.30) 

(A.31) 

(A.32) 

(A.33) 

(A.34) 

(A.35) 

(A.36) 

(A.37) 
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Here, Re(.) denotes the real part of the indicated expression. Equations (A.33)-(A.35) 

follow  by standard  trig formulas;  equation (A.36) follows  by using identity (A.32); and 

(A.37) follows  by the definition of s;j and %, in (A.2)-(A.5). 

Proof of (A.28)(A.29): These proofs follow  by a sequence of rearrangements  similar to those 

performed in (A.33)-(A.37), but  starting  with  the trigonometric expressions, 

CTCj = 5 cos ( w , ( t -  1)T) cos (uj(t - 1)T) 
e=l 

(A.38) 

(A.39) 

(A.40) 

Proof of (A.30): This  relation follows  by reversing the roles of i and j in  the proof of (A.29), 

making  use of the antisymmetric  property of sin("B) = - sin(0) and  symmetric  property 

of BN(-v) = BN(v). m 

THEOREM A. l  (Confluence Matrix for a  TDL) Let the component4 o f  t1.r rrctca- 

SOT x = [ z l ,  ..., zNIT E RN be defined b y  filtering a signal <(t) E R' through a rep d r k ~  lrne 

with N taps and t a p  de lay  T ,  i.e., 

xe = t = 1, ..., N (A .42) 

where the measured signal ( is given b y  the following sum of m distinct sinusoids, 
m m 

<(t) = a; sin(w;t + 4;) = X u ; ,  sin(w;t) + u;2 cos(w;t) (A.43) 
i=l i=l 

Then, the regressor x ( t )  is of the harmonic form, 

x = Xc( t )  (A .44) 

21 



'P 

where X E RNxPm,  c( t )  is defined in (2.5)) and  its  confluence  matrix  is  given by, 

(A.48) 

where  definitions (A.1)-(A.10) have  been  used. 

PROOF: Using standard trigonometric  identities, the l t h  element xf of the delayed 

regressor (A.42) can be expanded as, 
m 

q ( t )  = e-(e- l )STt  = E a ; ,  sin wi(t  - (l - 1)T)) + ai2 cos(wi(t - (e - l)T))(A.49) 
i=l 

sin(wi(l- 1)T) sin wit + cos(wi( l -  1)T) cos wit (A.50) 

Using (A.50), the full regressor z ( t )  can be decomposed in  terms of the vectors S; and Ci 

in (A.l )  as follows, 

Equivalently, (in matrix  notation), 

x ( t )  = Qdc( t )  (A.52) 
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Squaring up X and using (A.55) gives the confluence matrix, 

X T X  = dTQTQA 2 M (A.56) 

From the  structure of (A.53)-(A.55), the components blocks of M can  be  computed as, 

(A.57) 

Result (A.47) follows  by substituting  the identities (A.27)-(A.30) of Lemma A.3 into (A.57) 

and simplifying using expressions (A.1)-(A.10). Result (A.48) follows  by setting i = j in 

result (A.47) and simplifying by using the relation B,(O) = N .  

LEMMA A.4 Define, 

(A.59) 

where D2 is  defined b y  in (3.15) of Theorem 8.1, and  the  matrix M and  its  submatrices 

Mij,  Mi; are  defined b y  (A.45)(A.48) of Theorem A . l .  

Let  the  quantities cy;, A; ,Ei j ,  R.,j be defined  by (A.6)-(A.9),  and  assume  that  all  frequen- 

cies { w ; ) Z l  are  drawn  from a bounded  tone  set  i.e., I;t(m,T,g) defined in Definit ion 8.1. 

Then  the  following  properties  hold, 
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P2. Z(&j) = 1 

P3. Z((R;j) = 1 

P4. F(A;;) 5 
2 /  

P5. z(A;j) 5 2v 

PROOF: It follows from the definition of 6 in (A.8), that  the variables a;l,a;2,ac; are 

related as 

CY: = a;, 2 + ai2 2 (A.61) 

For the proof, extensive use will be  made of the definitions (A.2)-(A.10). Continuing, 

Proof of PI: 
1 1 

T ( A ~ )  = A%,,(ATA;) = A%.= [(a;l + I = ai 

T(&ij) = A%.z(&&j) = + dj) * I = 1 

1 
1 

Proof of P2: 
1 1 

Proof of P3: 
1 1 

T(&j) = AL,(R;&j) = A%.= [(.:; + s:j) * I ]  = 1 

2 G 
Proof of P4: 

N 
~ ( A i i )  = T(M;;  - -a; * I z x 2 )  = T -BN(w;T)ATR,;A, 

1 
5 -IBN(w;T)I F(A;)~ 5 - 2 4v 

7ra3 

(A.62) 

(A.63) 

(A.64) 

A .G5) 

A .G6) 

where (A.65) follows  by (A.48) of Theorem A.l ;  equation (A.66) follows  by P3 for i = j; 
and the  last inequality follows  by Lemma A.2 and  property P1 proved above. 

Proof of P5: 
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(A.69) 

Here, (A.67) follows from (A.47) of Theorem A.l and (A.60); and (A.69) follows by Lemma 

A.2 and  properties P1, P2,  and P3  proved above. w 

LEMMA A.5 Let  X = XT E R2mX2m be a symmetric  matrix  parti t ioned  into 2 X 2 blocks, 

PROOF: See Lemma B.5 of [3]. 
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